skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lejano, Raul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper proposes a flood risk visualization method that is (1) readily transferable (2) hyperlocal, (3) computationally inexpensive, and (4) geometrically accurate. This proposal is for risk communication, to provide high-resolution, three-dimensional flood visualization at the sub-meter level. The method couples a laser scanning point cloud with algorithms that produce textured floodwaters, achieved through compounding multiple sine functions in a graphics shader. This hyper-local approach to visualization is enhanced by the ability to portray changes in (i) watercolor, (ii) texture, and (iii) motion (including dynamic heights) for various flood prediction scenarios. Through decoupling physics-based predictions from the visualization, a dynamic, flood risk viewer was produced with modest processing resources involving only a single, quad-core processor with a frequency around 4.30 GHz and with no graphics card. The system offers several major advantages. (1) The approach enables its use on a browser or with inexpensive, virtual reality hardware and, thus, promotes local dissemination for flood risk communication, planning, and mitigation. (2) The approach can be used for any scenario where water interfaces with the built environment, including inside of pipes. (3) When tested for a coastal inundation scenario from a hurricane, 92% of the neighborhood participants found it to be more effective in communicating flood risk than traditional 2D mapping flood warnings provided by governmental authorities. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. There is increasing evidence that climate change will lead to greater and more frequent extreme weather events, thus underscoring the importance of effectively communicating risks of record storm surges in coastal communities. This article reviews why risk communication often fails to convey the nature and risk of storm surge among the public and highlights the limitations of conventional (two-dimensional) storm surge flood maps. The research explores the potential of dynamic street-level, augmented scenes to increase the tangibility of these risks and foster a greater sense of agency among the public. The study focused on Sunset Park, a coastal community in southwest Brooklyn that is vulnerable to storm surges and flooding. Two different representations of flooding corresponding to a category three hurricane scenario were prepared: (1) a conventional two-dimensional flood map (“2D” control group) and (2) a, dynamic, street view simulation (“3D”test group). The street view simulations were found to be (1) more effective in conveying the magnitude of flooding and evacuation challenges, (2) easier to use for judging flood water depth (even without a flood depth legend), (3) capable of generating stronger emotional responses, and (4) perceived as more authoritative in nature 
    more » « less